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Strain energy density bounds for linear anisotropic
elastic materials
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Abstract. Upper and lower bounds are presented for the magnitude of the strain energy density
in linear anisotropic elastic materials. One set of bounds is given in terms of the magnitude of the
stress field, another in terms of the magnitude of the strain field. Explicit algebraic formulas are
given for the bounds in the case of cubic, transversely isotropic, hexagonal and tetragonal
symmetry. In the case of orthotropic symmetry the explicit bounds depend upon the solution of
a cubic equation, and in the case of the monoclinic and triclinic symmetries, on the solution of
sixth order equations.

Bounds on the magnitude of" the strain energy density in linear anisotropic
elastic materials are needed in proofs of Saint-Venant's principle for these
materials (see, for example, Toupin [ I], Horgan [21, and the review of Horgan
and Knowles [3]). In this note we extend the method of bounding the strain
energy density employed by Horgan [41 to include specific anisotropic elastic
symmetries. We do this using a result of Mehrabadi and Cowin [5] in which
the coefficients of elasticity are expressed as a second rank tensor in a
six-dimensional space rather than as a fourth rank tensor in a three-dimen-
sional space. The results of Mehrabadi and Cowin [5] are a development of
ideas due to Kelvin [6]; see also Rychlewski [7]. The eigenvalues of the
six-dimensional, second rank elasticity tensor are the numerical coefficients in
the bounds obtained.

The anisotropic form of Hooke's law is often written in indicial notation as

Tij -- ci,.E,., (l)

where the C,,k. are the components of the elasticity tensor. There are three
important symmetry restrictions on the tensor Cosk.. These restrictions, which
require that components with the subscripts ijkm, jikm, and kmij be equal,
follow from the symmetry of the stress tensor, the symmetry of the strain
tensor, and the requirement that no work be produced by the elastic material
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in a closed loading cycle, respectively. Written as a linear transformation in
six dimensions, Hooke's law (I) has the representation, T = cE, or

"T, I cC11 c 12 c13 c14 C15 c16  Ell

T22  c, 2 c12 c23 c24 C25 c26  E2
T33 1C 3 c23 c33 c34 c35 c 36  E33
T2 3  = C14 C24 c 34 c44 c45 C46 2E 2 3  (2)
T3 C15 C25 C35 c45 c55 c5 2E 13
T12 C16 C26 C36 C46 c56 C6 .2E12

in the notation of Voigt. The relationship of the components of Cj,,. to the
components of the symmetric matrix c is easily seen.

Introducing new notation, (2) can be rewritten in the form.

1t = A, (3)

where the shearing components of these new six-dimensional stress and strain
vectors, d&noted by 1' and It, respectively, are multiplied by ,/2, and e is a
new six-by-six matrix. Thus the matrix form of (3) is given by

T1- C11  C 12  C1 3  V,/C 1 4  ./3CI S %/3c l 6  - l I
T22 C12  C22  C23  -/AC2 4  /TC 2, V/_c-U, E22

T3 C13  C23  C33  12CY4 'N,/'C 3 5 -/2C36 E33

- .T2/3 12C,4 /'2c 24 N/C 3 4  
2

c" 2C 2c 4  
2

c46 T3rE 23
_T,, NIýJCS V/-2cC25 •_2C3  

2 C4 2c5 2c% O2E 1 3

1/2T,, N/'2C16 V/2C26 ./2C 3 6 
2

c4 6 2c_% 2
c6s L/2E12 J

(4)

The symmetric matrix 4 can be shown, Mehrabadi and Cowin [51, to represent
the components of a second rank tensor in a six-dimensional space, whereas
the components of the matrix c appearing in (2) do not form a tensor. The
inverse of the elasticity tensor 4 is the compliance tensor A where i = V ', thus

t = Ar, (5)

where A is also a second rank tensor in a six-dimensional space. The eigenval-
ues of the matrix E are the six numbers A satisfying the equation

(4 - Al)NJ= O, (6)

and their inverses are the eigenvalues of the matrix A

( -(I/A)I)lq = 0, (7)
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where the vectors lN represent the eigenvectors of e or i. The linear transfor-
mation (3) defined by k is a six-dimensional symmetric transformation,
assumed to be positive definite, which has, of course, six positive eigenvalues.
These eigenvalues will be denoted by A,, i = 1 , 6, and ordered by the
inequalities A, > • •> A6 > 0. It follows that

A[IEI < ITI _< A, JEJ, I ti < Pll lTI, (8)
A, A

where the vertical bars on either side of a vector indicate the norm of the
vector, e.g.

jti = -t/ t. (9)

The strain energy density is denoted by 7 where

2Z. = 1r- C = (C). -C = IT- (it), (10)

and it can be expressed in terms of the strain eigenvector It-IN using the
eigenvalues of (6) as

. (A, [ + A2[&,] 2 + A3[9,] 2 + A4[.Q4]2 + A,[ + A 6[N 6X},

or in terms of the stress eigenvector ItIe, using the eigenvalues of (7) as

21=T112{ [I,1-2+ 1 [, 1+ [R,32+•[ (R12+ [R,•12 + [IR612}.

1A, [A*2 A,- A,4 5 A

(12)

Recalling that the vector N is a unit vector (1S- N = 1) in six dimensions, recall-
ing also the ordering of the eigenvalues by the inequalities A, • • A6 > 0,
the results (11) and (12) yield the inequalities

I I•
AIEI2 < 21<2 A,IC12, and IT11 • 2T< 1 Ir12, (13)

A, A,

respectively. These inequalities represent the bounds of interest. For a partic-
ular elastic symmetry the bounds (13) are employed with the values of A, and
A6 taken to be the numerically largest and smallest, respectively, of the
eigenvalues listed in Table I for that particular symmetry. The second of the
inequalities (13) has been previously derived in [4] (p. 232) and illustrated
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Table 1. The sets of distinct eigenvalues A for each of the ten distinct elastic symmetries. The
multiplicity of these eigenvalues is discussed in (5].

Isotropic symmetry

c 1I + 2C,, 2c44 (i.e.. 3A + 2y4, 2p)

Cubic symmetry

c,, + 2c1 2 , C, - Cl2 , 2c.

Transversely isotropic symmetry

½C, + c12 + c33) + N/8c + (¢,1 + C12 - c33)21,

½[(c,+, 2 C12 + C33 ) - /8M 3 + (c,, + c 2 - c 3)i,

C1 I- C 12, 2c44

Hexagonal (7) symmetry

½[(c,, + c12 + C33) + 1/ 1 + (c,, + C1 2 - C33)

½[(c,1 + c, 2 + c33) - 8c, 3 + (c,, + c. 2 - c13 )A-.

½[(c1, - c, 2 + 2c44) + /1I6c 4 + cZ) + (c. . - - 2c4 .. )],

½[(c,1 - c, + 2c) - / 6(c,+�c. ) + (Cel - c,2 - 2ýc.)1,

Hexagonal (6) symmetry

½(c, I + C12 +C33 ) + 1/8C23 + (c,, + c.2 -c13 •,

½[(c,, + c12 + c 33 ) - /8c1 3 + (c.. + c..C 3 ,) 21,

½[(c1, - c12 + 2 c44) + .1/&6c2+(c,, -C, 2 -2c.)1,

½[(C1, - c12 + 2c44) - /16cf.+(ci, -c, 2 -2c.)1.

Tetragonal (7) symmetry

½2RC, + C12 + C33) + 138c + (C, + C.2 - C33)

½c, + c12 + c33 ) - ]/8c23 +(c, + c, 2 -c3,)1.

[(c,1I - c 12 + 2c66) + /16c,. + (C.. -C 12 - 2c.)1.

2½[(c l! -- c,2 + 2C66 -- 1/ 6c2, + -(c,. - c , , 2c .6)2], 2c .

Tetragonal (6) symmetry

½[C, + c12 + c33) + ,c,3 + (c,. + c2 -

42(c,, + c,2 + c33) - V8c,,+(c,, +c12 - c3 )2 J.

C1 I -- C c12, 2c.6, 2c44
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Table I (Continued)

Orthotropic symmetry

C" C12 CI 31

2c.. 2c3s. 2c6, and the eigenvalues of the matrix lC .C 22 c,2 3

Ic13 c23 c331J

Mono%.Iinic symmetry

C11 Ce2 C13  v/2-Cl, 0 0

CI2 C22  C2 3  1/2C. 4 0 0

c13  C23  c3 .i~cM4  0 0

Eigenvalues of the matrix CO •. 23 C33 1 2CA4 0 0

0 0 0 0 2c., 2c,.
0 0 0 0 2c6 2c6,

Triclinic symmetry

C11  C12  C13  V/2C,4 V/2CIS -.,12C16 1
C12  C22 C23  ./2C24 .. /C 3 V

2
C26

C,, C,3  c33  ~ .I,, • ,JiC 3,

Eigenvalues of the matrix C3, sfC 23 3 V r2 4 2c. 2C4  
2

C3

, /2c, /l2c25 /2c33  2c4, 2c5s 2c5

there for the case of isotropic symmetry. The first of (13) has been given in
Gurtin [81 (p. 85) and, in the case of isotropic symmetry, by Villaggio [9] (p.
46). Toupin [i] and Gurtin [8] employ the terminology maximum elastic
modulus for A, and minimum elastic modulus for A6 ; see also [3] (p. 240).
Kelvin [61 called the A1, i = 1 .. ..6, the six principal elasticities of the
material; Pipkin [10] uses the term "principal compliance" for the inverse of
the same quantities; and Rychlewski [7] suggests, with persuasive historical
justification (but contrary to the contemporary trend to avoid eponyms), that
they be called the Kelhin moduli. Applications of the inequality represented by
the first of (13), in the isotropic case, to obtain bounds for total energies and
related quantities are described by Villaggio [9] (see. e.g., p. 400. 418).

In closing, we remark that the positivity of A,, i = I... . . , 6, is equivalent to
the positive definiteness of E, expressed as a quadratic form in either I or C.
The explicitness of the eigenvalues tabulated in Table I here thus enables one
to write down necessary and sufficient conditions for positive definiteness of 7+
directly in terms of the symmetric Voigt matrix c. The resulting conditions are
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simpler than the expressions involving principal minors of c that are usually
employed in the literature.
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